论文标题
通用准术的内在熵
Intrinsic entropy for generalized quasimetric semilattices
论文作者
论文摘要
我们在类别中介绍了内在半刻度熵的概念$ \ wideTilde h $,$ \ mathcal l_ {qm {qm} $概述的准半层次和承包同型同构。通过使用适当的类别$ \ mathfrak x $和函子$ f:\ mathfrak x \ to \ mathcal l_ {qm {qm} $,我们找到了特定的已知入口$ \ widetilde h_ \ mathfrak h_ \ mathfrak x $ on $ \ mathfrak x $作为intinsic function in Intinsic function function in Intopies这些熵是内在的代数熵,代数和拓扑熵的局部线性紧凑矢量空间,是局部紧凑的完全脱节组的拓扑熵,以及局部紧凑的紧凑型紧凑型覆盖的Abelian组的代数熵。
We introduce the notion of intrinsic semilattice entropy $\widetilde h$ in the category $\mathcal L_{qm}$ of generalized quasimetric semilattices and contractive homomorphisms. By using appropriate categories $\mathfrak X$ and functors $F:\mathfrak X\to\mathcal L_{qm}$ we find specific known entropies $\widetilde h_\mathfrak X$ on $\mathfrak X$ as intrinsic functorial entropies, that is, as $\widetilde h_\mathfrak X=\widetilde h\circ F$. These entropies are the intrinsic algebraic entropy, the algebraic and the topological entropies for locally linearly compact vector spaces, the topological entropy for locally compact totally disconnected groups and the algebraic entropy for locally compact compactly covered abelian groups.