论文标题

四元组代数中规范的某些特性

Some properties of the norm in a quaternion division algebra

论文作者

Flaut, Cristina, Savin, Diana

论文摘要

在本文中,我们在某些四元组代数中提供了一些规范形式的应用,并在与四元素元素有关的斐波那契序列和斐波那契序列中提供了一些属性。我们在fnite集上定义了一个单体结构,我们将证明定义的斐波那契序列是固定的,我们提供了与著名的拉格兰奇四平方定理及其由Ramanujan给出的著名的四平方定理有关的合理四基因代数的范围。此外,我们证明了一些关于在某些分裂四个代数定义的整数四季度的算术的结果,我们通过使用fibonacci序列来定义并赋予某些特殊季节的特性。

In this paper we provide some applications of the norm form in some quaternion division algebras over rational field and we give some properties of Fibonacci sequence and Fibonacci sequence in connection with quaternion elements. We define a monoid structure over a fnite set on which we will prove that the defined Fibonacci sequence is stationary, we provide some properties of the norm of a rational quaternion algebra, in connection to the famous Lagrange's four-square theorem and its generalizations given by Ramanujan. Moreover, we prove some results regarding the arithmetic of integer quaternions defined on some division quaternion algebras and we define and give properties of some special quaternions by using Fibonacci sequences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源