论文标题

波动方程建模内存中的自由振动

Free vibrations in a wave equation modeling MEMS

论文作者

García-Azpeitia, Carlos, Lessard, Jean-Philippe

论文摘要

我们研究了在具有强度$λ$的静电电势的存在下作为膜(无粘性效应)的模型的非线性波方程。该膜在\ lbrack0,λ_{\ ast}] $的$λ\中具有唯一的稳定分支$u_λ$。我们证明,当参数$λ$变化时,分支$u_λ$具有无限数量的周期性解决方案(自由振动)分支。此外,使用功能设置,我们按数值计算分支$u_λ$及其定期解决方案分支。此方法对于在临界值$λ_{\ ast} $上严格验证稳定状态$u_λ$很有用。

We study a nonlinear wave equation appearing as a model for a membrane (without viscous effects) under the presence of an electrostatic potential with strength $λ$. The membrane has a unique stable branch of steady states $u_λ$ for $λ\in\lbrack0,λ_{\ast}]$. We prove that the branch $u_λ$ has an infinite number of branches of periodic solutions (free vibrations) bifurcating when the parameter $λ$ is varied. Furthermore, using a functional setting, we compute numerically the branch $u_λ$ and their branches of periodic solutions. This approach is useful to validate rigorously the steady states $u_λ$ at the critical value $λ_{\ast}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源