论文标题
完整交叉口的海骨属
The Hirzebruch genera of complete intersections
论文作者
论文摘要
在布鲁克斯对$ \ hat {a} $的计算之后,完整交叉点的属,一种关于$ \ hat {a} $ - 属和$α$ invariant的新的,更可计算的公式,将被描述为多数度和尺寸的多项式。我们还提供了$ \ hat {a} $ - 属的迭代公式,以及消失的$ \ hat {a} $的必要条件,即复杂的dimensional Spin完整交集。最后,我们获得了有关完整交叉路口的Hirzebruch属的一般公式,并计算出一些经典的Hirzebruch属作为例子。
Following Brooks's calculation of the $\hat{A}$-genus of complete intersections, a new and more computable formula about the $\hat{A}$-genus and $α$-invariant will be described as polynomials of multi-degree and dimension. We also give an iterated formula of $\hat{A}$-genus and the necessary and sufficient conditions for the vanishing of $\hat{A}$-genus of complex even dimensional spin complete intersections. Finally, we obtain a general formula about the Hirzebruch genus of complete intersections, and calculate some classical Hirzebruch genera as examples.