论文标题

欧拉和两分二进制三角洲 - 摩特犬

Eulerian and bipartite binary delta-matroids

论文作者

Yan, Qi, Jin, Xian'an

论文摘要

三角形 - 皇家理论通常被认为是拓扑图理论的概括。众所周知,只有当它的petrie dual是可以定位的,仅当它的petrie dual时,一个可定向的嵌入图是两部分。在本文中,我们首先介绍了Eulerian和二分三曲霉的概念,然后将结果从嵌入式图扩展到任意的二进制二元甲状腺。任何两分嵌入的图的双重图是Eulerian。我们还将结果从嵌入式图扩展到作为二进制曲线的曲折的三角形 - 催眠剂类别。还获得了几个相关的结果。

Delta-matroid theory is often thought of as a generalization of topological graph theory. It is well-known that an orientable embedded graph is bipartite if and only if its Petrie dual is orientable. In this paper, we first introduce the concepts of Eulerian and bipartite delta-matroids and then extend the result from embedded graphs to arbitrary binary delta-matroids. The dual of any bipartite embedded graph is Eulerian. We also extend the result from embedded graphs to the class of delta-matroids that arise as twists of binary matroids. Several related results are also obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源