论文标题

通过配置LP安排内核

Scheduling Kernels via Configuration LP

论文作者

Knop, Dušan, Koutecký, Martin

论文摘要

MakePAN最小化(在平行或无关的机器上)可以说是最自然和研究的调度问题。实用算法设计中的一种常见方法是通过快速预处理步骤减少给定实例的大小,同时即使在减少此减少后也能够恢复关键信息。该概念被正式研究为内核化(或简单的内核) - 一个多项式时间过程,该过程产生了一个等效的实例,其大小以某些给定参数为界。从已知的结果来看,通过最长的作业处理时间$ p _ {\ max} $具有kernelization的最小化参数化,从而产生了一个减少的实例,其大小在$ p _ {\ max max} $中的大小为指数。可以将其简化为$ p _ {\ max} $中的多项式吗? 我们不仅要最小化MakePAN,而且还为(更复杂的)目标来回答这一点,即最小化完成时间的加权总和,当机器类型的数量是一个参数时,也是在无关机器的设置中。我们的算法首先解决了配置LP,并基于其解决方案构造了一个中间问题的解决方案,称为巨大$ n $ fold Integer编程。该解决方案的大小进一步降低了一系列步骤,直到其编码长度在参数中为多项式为止。然后,我们表明,巨大的$ n $ fold IP位于NP中,这意味着我们的调度问题有多项式减少,产生了一个内核。 在内核化的背景下,我们的技术是高度新颖的,我们关于配置LP的结构定理具有独立的关注。此外,我们显示了一个多项式内核,该内核有条件,条件是在多项式时间内是否可以解决所谓的分离子问题。考虑到整数编程不接受多项式内核,除了非常有限的情况外,我们的“有条件内核”提供了新的见解。

Makespan minimization (on parallel identical or unrelated machines) is arguably the most natural and studied scheduling problem. A common approach in practical algorithm design is to reduce the size of a given instance by a fast preprocessing step while being able to recover key information even after this reduction. This notion is formally studied as kernelization (or simply, kernel) -- a polynomial time procedure which yields an equivalent instance whose size is bounded in terms of some given parameter. It follows from known results that makespan minimization parameterized by the longest job processing time $p_{\max}$ has a kernelization yielding a reduced instance whose size is exponential in $p_{\max}$. Can this be reduced to polynomial in $p_{\max}$? We answer this affirmatively not only for makespan minimization, but also for the (more complicated) objective of minimizing the weighted sum of completion times, also in the setting of unrelated machines when the number of machine kinds is a parameter. Our algorithm first solves the Configuration LP and based on its solution constructs a solution of an intermediate problem, called huge $N$-fold integer programming. This solution is further reduced in size by a series of steps, until its encoding length is polynomial in the parameters. Then, we show that huge $N$-fold IP is in NP, which implies that there is a polynomial reduction back to our scheduling problem, yielding a kernel. Our technique is highly novel in the context of kernelization, and our structural theorem about the Configuration LP is of independent interest. Moreover, we show a polynomial kernel for huge $N$-fold IP conditional on whether the so-called separation subproblem can be solved in polynomial time. Considering that integer programming does not admit polynomial kernels except for quite restricted cases, our "conditional kernel" provides new insight.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源