论文标题

热色彩的强大感知夜视

Robust Perceptual Night Vision in Thermal Colorization

论文作者

Almasri, Feras, Debeir, Olivier

论文摘要

将热红外图像转换为强大的感知颜色可见图像是一个错误的问题,因为它们的光谱域和对象表示中的差异。物体出现在一个频谱中,但不一定在另一个频谱中出现,并且单个对象的热特征在其可见表示中可能具有不同的颜色。这使得不可能从热图像到可见图像的直接映射,并且需要一个解决方案,该解决方案可以保留在热光谱中捕获的纹理,同时预测某些物体可能的颜色。在这项工作中,提出了一种深度学习方法,将热签名从热图像的光谱绘制到其低频空间中可见的表示。然后,使用一种泛 - 肖型方法将预测的低频表示与从热图像中提取的高频表示。当对象的外观变化不大并在其他情况下产生平均的灰色值时,提出的模型会生成与可见地面真理一致的颜色值。所提出的方法与现有的最新作品相比,在保留对象的外观和图像上下文时显示了强大的感知夜视图像。

Transforming a thermal infrared image into a robust perceptual colour Visible image is an ill-posed problem due to the differences in their spectral domains and in the objects' representations. Objects appear in one spectrum but not necessarily in the other, and the thermal signature of a single object may have different colours in its Visible representation. This makes a direct mapping from thermal to Visible images impossible and necessitates a solution that preserves texture captured in the thermal spectrum while predicting the possible colour for certain objects. In this work, a deep learning method to map the thermal signature from the thermal image's spectrum to a Visible representation in their low-frequency space is proposed. A pan-sharpening method is then used to merge the predicted low-frequency representation with the high-frequency representation extracted from the thermal image. The proposed model generates colour values consistent with the Visible ground truth when the object does not vary much in its appearance and generates averaged grey values in other cases. The proposed method shows robust perceptual night vision images in preserving the object's appearance and image context compared with the existing state-of-the-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源