论文标题

一种近似集群积分并复制模型和真实气体的亚临界等温线的方法

A method to approximate cluster integrals and reproduce subcritical isotherms for model and real gases

论文作者

Ushcats, M. V., Bulavin, L. A.

论文摘要

提出了一种方法,以近似于有关几种不可避免的积分(病毒系数)和饱和活性的信息,可以近似Mayer可减少簇积分的无限次临界集群集簇积分(即已知病毒膨胀的功率系数)。对于Lennard-Jones流体,前四个不可减至的积分实际上足以再现气体等温线(包括平坦相转换区域),在三重和临界点之间的温度下具有很高的精度。在低温下,即使仅使用一阶不可约积分(第二个病毒系数)的使用也几乎具有相同的准确性,从而使该方法适用于具有未知相互作用潜力的真实流体。特别是,计算出的水等温度与实验非常吻合。

A method is proposed to approximate the unlimited subcritical set of Mayer`s reducible cluster integrals (i.e., the power coefficients of the known virial expansions for pressure and density in powers of activity) on the basis of information about several irreducible integrals (virial coefficients) and the saturation activity. For the Lennard-Jones fluid, the first four irreducible integrals are actually sufficient to reproduce gas isotherms (including the flat phase-transition region) with high accuracy at temperatures between the triple and critical points. At low temperatures, even the usage of the first-order irreducible integral only (second virial coefficient) yields almost the same accuracy that, in turn, makes the method applicable to the real fluids with unknown interaction potential. In particular, the calculated water isotherms are in good agreement with experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源