论文标题
血管外损伤中血小板聚集的数学模型
A Mathematical Model of Platelet Aggregation in an Extravascular Injury Under Flow
论文作者
论文摘要
我们介绍了血管外损伤中流介导的原发性止血的第一个数学模型,该模型可以跟踪从初始沉积到遮挡的过程。该模型由描述血小板聚集(粘附和内聚力),可溶性激动剂依赖性血小板激活以及血液通过损伤的血小板聚集的系统组成。血小板聚集体的形成增加了对损伤流动的阻力,该损伤是使用Stokes-Brinkman方程进行建模的。来自类似的实验(微流体流)和部分微分方程模型的数据,用于血小板粘附,内聚力和激活的ODE模型描述中使用的参数值。该模型预测在一系列流量和血小板激活条件下的损伤阻塞。测试剪切和激活速率的效果导致闭塞和骨料异质性延迟。这些结果证明了我们的假设,即流动介导的激活化学ADP稀释阻碍了骨料发育。可以扩展这个新型的建模框架,包括更多的血小板激活机制以及添加凝结的生化反应,从而导致计算上有效的高吞吐量筛选工具。
We present the first mathematical model of flow-mediated primary hemostasis in an extravascular injury, which can track the process from initial deposition to occlusion. The model consists of a system of ordinary differential equations (ODE) that describe platelet aggregation (adhesion and cohesion), soluble-agonist-dependent platelet activation, and the flow of blood through the injury. The formation of platelet aggregates increases resistance to flow through the injury, which is modeled using the Stokes-Brinkman equations. Data from analogous experimental (microfluidic flow) and partial differential equation models informed parameter values used in the ODE model description of platelet adhesion, cohesion, and activation. This model predicts injury occlusion under a range of flow and platelet activation conditions. Simulations testing the effects of shear and activation rates resulted in delayed occlusion and aggregate heterogeneity. These results validate our hypothesis that flow-mediated dilution of activating chemical ADP hinders aggregate development. This novel modeling framework can be extended to include more mechanisms of platelet activation as well as the addition of the biochemical reactions of coagulation, resulting in a computationally efficient high throughput screening tool.