论文标题
使用混合量子量子计算工作流量的评估热力学特性的考虑因素
Considerations for evaluating thermodynamic properties with hybrid quantum-classical computing work-flows
论文作者
论文摘要
量子计算机上的量子化学应用当前很大程度上依赖于变异量子本质量(VQE)算法。这种杂种量子古典算法旨在根据变异原理找到分子系统的基态解决方案。可以系统地实施VQE计算,以扰动每个分子的自由度,从而为该分子产生一个出生的势能表面(PES)。然后,PE可用于得出热力学特性,这些特性通常是在化学工程和材料设计中应用的。从这个过程可以明显看出,量子化学应用程序除了可以使用量子计算机执行的步骤外,还包含大量的经典计算组件。为了设计充分利用每个硬件类型的有效工作流程,重要的是要考虑整个过程,以便在计算热力学特性的过程中不会浪费量子计算的高准确性电子能量。我们提出了杂交量子古典工作流的摘要,以计算热力学特性。该工作流包含许多可以显着影响结果的效率和准确性的选项,包括经典优化器属性,ANSATZ重复的数量以及如何求解振动Schroedinger方程以确定振动模式。我们还通过使用强大的统计数据以及对实际量子硬件的模拟和实验来分析这些选项的影响。我们表明,通过仔细选择工作流选项,在同等计算时间内,准确性几乎可以提高准确性。
Quantum chemistry applications on quantum computers currently rely heavily on the variational quantum eigensolver (VQE) algorithm. This hybrid quantum-classical algorithm aims at finding ground state solutions of molecular systems based on the variational principle. VQE calculations can be systematically implemented for perturbations to each molecular degree of freedom, generating a Born-Oppenheimer potential energy surface (PES) for the molecule. The PES can then be used to derive thermodynamic properties, which are often desirable for applications in chemical engineering and materials design. It is clear from this process that quantum chemistry applications contain a substantial classical computing component in addition to steps that can be performed using a quantum computer. In order to design efficient work-flows that take full advantage of each hardware-type, it is critical to consider the entire process so that the high-accuracy electronic energies possible from quantum computing are not squandered in the process of calculating thermodynamic properties. We present a summary of the hybrid quantum-classical work-flow to compute thermodynamic properties. This work-flow contains many options that can significantly affect the efficiency and the accuracy of the results, including classical optimizer attributes, number of ansatz repetitions, and how the vibrational Schroedinger equation is solved to determine vibrational modes. We also analyze the effects of these options by employing robust statistics along with simulations and experiments on actual quantum hardware. We show that through careful selection of work-flow options, nearly order-of-magnitude increases in accuracy are possible at equivalent computing time.