论文标题
解决可压缩的Navier-Stokes方程的解决方案解决方案的解决方案的渐近行为与Cauchy问题
Asymptotic behavior of solutions toward the strong contact discontinuity for compressible Navier-Stokes equations with Cauchy problem
论文作者
论文摘要
在本文中,我们考虑了库奇问题的非分离理想的多样化纳维尔 - 长方形方程。接触不连续性的渐近稳定性是在初始扰动部分很小但接触不连续性的强度很大的情况下确定的。在这种情况下,可以从Navier-Stokes方程的复杂结构中获得密度和温度的边界。证明是由基本能量法给出的。
In this paper, we consider the nonisentropic ideal polytropic Navier-Stokes equations to the Cauchy problem. The asymptotic stability of contact discontinuity is established under the condition that the initial perturbations are partly small but the strength of contact discontinuity can be suitably large. With this conditions, the bounds of density and temperature can be obtained from the complicated structure of Navier-Stokes equations. The proofs are given by the elementary energy method.