论文标题
Minkowski背景中的自由边界硬相流体及其牛顿极限
Well-posedness of the free boundary hard phase fluids in Minkowski background and its Newtonian limit
论文作者
论文摘要
硬相模型描述了一种相对论的正交液体,其声速等于光速。在本文中,我们证明了该模型在Minkowski背景中具有自由边界的局部良好性。此外,我们表明,随着光的速度倾向于无穷大,该模型的解决方案会收敛到不可压缩流体的牛顿自由边界问题的解决方案。在附录中,我们解释了如何将我们的证明扩展到一般的压缩流体无边界问题。
The hard phase model describes a relativistic barotropic irrotational fluid with sound speed equal to the speed of light. In this paper, we prove the local well-posedness for this model in the Minkowski background with free boundary. Moreover, we show that as the speed of light tends to infinity, the solution of this model converges to the solution of the corresponding Newtonian free boundary problem for incompressible fluids. In the appendix we explain how to extend our proof to the general barotropic fluid free boundary problem.