论文标题

针对多步项应用的初始值问题的一般放松方法

General Relaxation Methods for Initial-Value Problems with Application to Multistep Schemes

论文作者

Ranocha, Hendrik, Lóczi, Lajos, Ketcheson, David I.

论文摘要

最近,已经开发了一种称为弛豫的方法,用于保留使用Runge-Kutta方法在初始值问题的数值解决方案中的正确演变。我们将这种方法推广到多步法方法,包括所有阶级或更高阶和许多其他类别方案的一般线性方法。在通用方程式(包括但不限于保守或耗散系统)的背景下,我们证明了由此产生的方法的有效放松参数和高阶精度的存在。该理论用几个数值示例进行了说明。

Recently, an approach known as relaxation has been developed for preserving the correct evolution of a functional in the numerical solution of initial-value problems, using Runge-Kutta methods. We generalize this approach to multistep methods, including all general linear methods of order two or higher, and many other classes of schemes. We prove the existence of a valid relaxation parameter and high-order accuracy of the resulting method, in the context of general equations, including but not limited to conservative or dissipative systems. The theory is illustrated with several numerical examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源