论文标题

DEPROCAMS:投影仪摄像机系统的同时重新重新确定,补偿和形状重建

DeProCams: Simultaneous Relighting, Compensation and Shape Reconstruction for Projector-Camera Systems

论文作者

Huang, Bingyao, Ling, Haibin

论文摘要

基于图像的重新计算,投影仪补偿和深度/正常重建是投影仪相机系统(Procams)和空间增强现实(SAR)的三个重要任务。尽管他们共享了找到投影仪相机图像映射的类似管道,但是从传统上讲,它们是独立解决的,有时会带有不同的先决条件,设备和采样图像。实际上,对于SAR应用程序,这可能很麻烦,可以一对一地解决它们。在本文中,我们提出了一种名为Deprocams的新型端到端可训练的模型,以明确学习Procams的光度和几何映射,一旦训练,可以同时将Deprocams应用于三个任务。 Deprocams明确将投影仪摄像机图像映射分解为三个子过程:阴影属性估计,粗糙的直接光估计和感性逼真的神经渲染。废cam所针对的特定挑战是闭塞,我们为此利用了外两极约束,并提出了一种新型的可区分投影仪直接遮罩。因此,它可以与其他模块一起端到端学习。之后,为了提高收敛性,我们采用光度法和几何约束,使中间结果是合理的。在我们的实验中,堕胎剂与以前的艺术相比具有明显的优势,其质量有希望,同时是完全可区分的。此外,通过在统一模型中求解这三个任务,Deprocams放弃了需要其他光学设备,辐射校准和结构化光线的需要。

Image-based relighting, projector compensation and depth/normal reconstruction are three important tasks of projector-camera systems (ProCams) and spatial augmented reality (SAR). Although they share a similar pipeline of finding projector-camera image mappings, in tradition, they are addressed independently, sometimes with different prerequisites, devices and sampling images. In practice, this may be cumbersome for SAR applications to address them one-by-one. In this paper, we propose a novel end-to-end trainable model named DeProCams to explicitly learn the photometric and geometric mappings of ProCams, and once trained, DeProCams can be applied simultaneously to the three tasks. DeProCams explicitly decomposes the projector-camera image mappings into three subprocesses: shading attributes estimation, rough direct light estimation and photorealistic neural rendering. A particular challenge addressed by DeProCams is occlusion, for which we exploit epipolar constraint and propose a novel differentiable projector direct light mask. Thus, it can be learned end-to-end along with the other modules. Afterwards, to improve convergence, we apply photometric and geometric constraints such that the intermediate results are plausible. In our experiments, DeProCams shows clear advantages over previous arts with promising quality and meanwhile being fully differentiable. Moreover, by solving the three tasks in a unified model, DeProCams waives the need for additional optical devices, radiometric calibrations and structured light.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源