论文标题
在Miller模型中,功能的M-分离空间是有效的
M-separable spaces of functions are productive in the Miller model
论文作者
论文摘要
我们证明,在Miller型号中,$ c_p(x)$的每$ m $ - 分离空间,其中$ x $是可分离且可分开的,具有有效的$ m $ - $ m $ - 可取的,即$ c_p(x)\ times y $ as $ m $ as $ m $ - 可用于每个不计数$ m $ m $ $ m $ $ $ y $。
We prove that in the Miller model, every $M$-separable space of the form $C_p(X)$, where $X$ is metrizable and separable, is productively $M$-separable, i.e., $C_p(X)\times Y$ is $M$-separable for every countable $M$-separable $Y$.