论文标题

亚北极线形成:共振行星的视图

Sub-Neptune Formation: The View from Resonant Planets

论文作者

Choksi, Nick, Chiang, Eugene

论文摘要

相邻亚核的轨道周期比在一阶共振附近不对称分布。系统的缺陷---在周期比直方图中“低谷” ---仅缺乏可辨别性和过量的---“峰” - - - - - 仅仅是宽阔的。我们使用行星及其出生盘之间的耗散性相互作用,定量地重现了3:2和2:1的共振,最强的峰值不对称的不对称性。圆盘偏心性阻尼会将身体捕获到共振中并清除槽,当与圆盘驱动的融合迁移结合使用时,将最初具有可分离性的行星绘制到峰值中。峰值所隐含的迁移是适中的。轨道周期的减少为$ \ sim $ 10 \%,支持子纳普在原位完成其形成或无现成的观点。一旦被捕获到共振中,典型质量$ \ sim $$ 5 $ 5 $ - $ 15 m _ {\ oplus} $保持捕获的子网状(与较早的索赔相反),因为它们不受较高的质量,以免遭受较低的群众行星。驱动有限的,短尺寸的迁移是一种气盘,相对于太阳能组合盘耗尽了3--5个数量级。这种贫乏的气体环境在定量上与巨大的影响(例如,卵子积聚)定量地与亚北极核心形成一致。虽然地球形成时代结束时的圆盘行星相互作用充分解释了3:2和2:2:1的不对称,在时期$ \ gtrsim $ 5 $ - $ 5 $ - $ 15 $天,但随后在较短的时期中,出现Stellar Tides的随后进行修改,特别是在2:1中。

The orbital period ratios of neighbouring sub-Neptunes are distributed asymmetrically near first-order resonances. There are deficits of systems---"troughs" in the period ratio histogram---just short of commensurability, and excesses---"peaks"---just wide of it. We reproduce quantitatively the strongest peak-trough asymmetries, near the 3:2 and 2:1 resonances, using dissipative interactions between planets and their natal discs. Disc eccentricity damping captures bodies into resonance and clears the trough, and when combined with disc-driven convergent migration, draws planets initially wide of commensurability into the peak. The migration implied by the magnitude of the peak is modest; reductions in orbital period are $\sim$10\%, supporting the view that sub-Neptunes complete their formation more-or-less in situ. Once captured into resonance, sub-Neptunes of typical mass $\sim$$5$--$15 M_{\oplus}$ stay captured (contrary to an earlier claim), as they are immune to the overstability that afflicts lower mass planets. Driving the limited, short-scale migration is a gas disc depleted in mass relative to a solar-composition disc by 3--5 orders of magnitude. Such gas-poor but not gas-empty environments are quantitatively consistent with sub-Neptune core formation by giant impacts (and not, e.g., pebble accretion). While disc-planet interactions at the close of the planet formation era adequately explain the 3:2 and 2:1 asymmetries at periods $\gtrsim$ $5$--$15$ days, subsequent modification by stellar tides appears necessary at shorter periods, particularly for the 2:1.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源