论文标题
随机系统的控制障碍功能
Control Barrier Functions for Stochastic Systems
论文作者
论文摘要
控制屏障功能(CBFS)旨在通过在每个时间步骤约束控制输入来确保安全性,以使系统状态保持在所需的安全区域之内。本文在存在高斯过程和测量噪声的情况下为随机系统中的CBF提供了一个框架。我们首先考虑在每个时间步骤中都知道系统状态的情况,并且目前呈现量的CBF构造,以确保安全性具有概率1。我们将结果扩展到具有线性动力学和仿射安全性约束的高相对程度系统。然后,我们为不完整的状态信息环境开发CBF,其中必须使用高斯噪声损坏的传感器来估算状态。我们证明,当状态估计位于真实状态的给定边界内时,我们提出的CBF确保了安全性1,当系统是线性或过程和测量噪声足够小时,可以使用扩展的Kalman滤波器来实现。我们提出了将这些CBF与对照Lyapunov功能相结合的控制策略,以共同确保安全性和随机稳定性。我们的结果通过数值研究验证了多方面避免碰撞示例。
Control Barrier Functions (CBFs) aim to ensure safety by constraining the control input at each time step so that the system state remains within a desired safe region. This paper presents a framework for CBFs in stochastic systems in the presence of Gaussian process and measurement noise. We first consider the case where the system state is known at each time step, and present reciprocal and zero CBF constructions that guarantee safety with probability 1. We extend our results to high relative degree systems with linear dynamics and affine safety constraints. We then develop CBFs for incomplete state information environments, in which the state must be estimated using sensors that are corrupted by Gaussian noise. We prove that our proposed CBF ensures safety with probability 1 when the state estimate is within a given bound of the true state, which can be achieved using an Extended Kalman Filter when the system is linear or the process and measurement noise are sufficiently small. We propose control policies that combine these CBFs with Control Lyapunov Functions in order to jointly ensure safety and stochastic stability. Our results are validated via numerical study on a multi-agent collision avoidance example.