论文标题

坚固的,闭塞意识的姿势估计被自适应手抓住的物体

Robust, Occlusion-aware Pose Estimation for Objects Grasped by Adaptive Hands

论文作者

Wen, Bowen, Mitash, Chaitanya, Soorian, Sruthi, Kimmel, Andrew, Sintov, Avishai, Bekris, Kostas E.

论文摘要

许多操纵任务,例如放置或内部操纵,都需要相对于机器人手的姿势。当手显着阻塞对象时,任务很困难。对于自适应手来说,这尤其困难,对于检测手指的构型并不容易。此外,仅RGB的方法与无纹理对象或手和对象看起来相似时面对问题。本文提出了一个基于深度的框架,其目的是实现稳健的姿势估计和较短的响应时间。该方法通过有效的并行搜索来检测自适应手的状态,并且给定手部模型和点云之间的最高重叠。将手的点云修剪过,并执行强大的全局注册以生成群集的对象姿势假设。虚假假设通过物理推理来修剪。鉴于与观察到的数据一致的一致性,对剩余的姿势的质量进行了评估。对合成和真实数据的广泛评估表明,在针对不同对象类型的具有挑战性的,高度重新限制的方案应用于框架的准确性和计算效率。一项消融研究确定了该框架的组件如何帮助性能。这项工作还提供了一个用于6D对象姿势估计的数据集。代码和数据集可用:https://github.com/wenbowen123/icra20 hand-object-pose

Many manipulation tasks, such as placement or within-hand manipulation, require the object's pose relative to a robot hand. The task is difficult when the hand significantly occludes the object. It is especially hard for adaptive hands, for which it is not easy to detect the finger's configuration. In addition, RGB-only approaches face issues with texture-less objects or when the hand and the object look similar. This paper presents a depth-based framework, which aims for robust pose estimation and short response times. The approach detects the adaptive hand's state via efficient parallel search given the highest overlap between the hand's model and the point cloud. The hand's point cloud is pruned and robust global registration is performed to generate object pose hypotheses, which are clustered. False hypotheses are pruned via physical reasoning. The remaining poses' quality is evaluated given agreement with observed data. Extensive evaluation on synthetic and real data demonstrates the accuracy and computational efficiency of the framework when applied on challenging, highly-occluded scenarios for different object types. An ablation study identifies how the framework's components help in performance. This work also provides a dataset for in-hand 6D object pose estimation. Code and dataset are available at: https://github.com/wenbowen123/icra20-hand-object-pose

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源