论文标题

Alphanet:注意力指导的深网,用于自动图像垫子

AlphaNet: An Attention Guided Deep Network for Automatic Image Matting

论文作者

Sharma, Rishab, Deora, Rahul, Vishvakarma, Anirudha

论文摘要

在本文中,我们提出了一个端到端解决方案,用于图像垫子,即从自然图像中高精度提取前景对象。当背景为纯绿色或蓝色时,可以通过在工作室设置中的色度键入轻松实现图像垫和背景检测。尽管如此,在具有复杂且深度背景不均匀的自然场景中的图像垫子仍然是一项繁琐的任务,需要人为干预。为了在自然场景中实现完整的自动前景提取,我们提出了一种方法,将语义分割和深层图像底漆过程吸收到单个网络中,以生成图像组成任务的详细语义哑光。我们提出的方法的贡献是两个方面,首先可以将其解释为一种完全自动化的语义图像矩阵方法,其次是对现有语义分割模型的改进。我们提出了一种新型的模型体系结构,作为分割和垫片的组合,该组合统一了引起关注的概念,将升级和放采样运算符的功能统一。如我们的工作中所示,与其他正常的下采样和上采样技术不同,注意力指导下的下采样和上采样可以提取高质量的边界细节。为了实现这一目标,我们利用了一个注意力指导的编码器框架,该框架确实是无监督的学习,从而自适应地从数据中生成注意力图,以服务和指导上下采样和下采样运算符。我们还构建了一个具有高质量alpha哑光的时尚电子商务专业数据集,以促进图像垫子的培训和评估。

In this paper, we propose an end to end solution for image matting i.e high-precision extraction of foreground objects from natural images. Image matting and background detection can be achieved easily through chroma keying in a studio setting when the background is either pure green or blue. Nonetheless, image matting in natural scenes with complex and uneven depth backgrounds remains a tedious task that requires human intervention. To achieve complete automatic foreground extraction in natural scenes, we propose a method that assimilates semantic segmentation and deep image matting processes into a single network to generate detailed semantic mattes for image composition task. The contribution of our proposed method is two-fold, firstly it can be interpreted as a fully automated semantic image matting method and secondly as a refinement of existing semantic segmentation models. We propose a novel model architecture as a combination of segmentation and matting that unifies the function of upsampling and downsampling operators with the notion of attention. As shown in our work, attention guided downsampling and upsampling can extract high-quality boundary details, unlike other normal downsampling and upsampling techniques. For achieving the same, we utilized an attention guided encoder-decoder framework which does unsupervised learning for generating an attention map adaptively from the data to serve and direct the upsampling and downsampling operators. We also construct a fashion e-commerce focused dataset with high-quality alpha mattes to facilitate the training and evaluation for image matting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源