论文标题

Gabriel-Krull维度和最小原子类别

Gabriel-Krull dimension and minimal atoms in Grothendieck categories

论文作者

Alipour, Negar, Sazeedeh, Reza

论文摘要

令$ \ Mathcal {a} $为Grothendieck类别。在本文中,我们通过$ \ Mathcal {A} \ Mathrm {spec} \,\ Mathcal {a a} $的开放子集对半noetherian类别的本地化子类别进行分类。对于半noetherian本地相干类别$ \ Mathcal {a} $,我们在$ \ Mathcal {a} \ Mathrm {spec} \,\ Mathcal {a a} $上引入了一个新的拓扑,我们证明了它对Ziegler spectrum $ \ mathrm {Z____________________________________此外,对于本地连贯的类别$ \ Mathcal {a} $,我们提供了一个新的特征,以定位有限类型的$ \ Mathcal {a} $的子类别。我们使用预订$ \ leq $在$ \ Mathcal {a} \ Mathrm {spec} \,\ Mathcal {a} $上定义对象的维度,该对象是Gabriel-Krull Dimension的下限。最后,我们研究了$ \ noterian对象$ m $ in $ \ mathcal {a} $的最小原子,并为$ m $ $ m $的最小原子数的有限数建立了足够的条件。

Let $\mathcal{A}$ be a Grothendieck category. In this paper, we classify localizing subcategories of a semi-noetherian category $\mathcal{A}$ through open subsets of $\mathcal{A}\mathrm{Spec}\,\mathcal{A}$. For a semi-noetherian locally coherent category $\mathcal{A}$, we introduce a new topology on $\mathcal{A}\mathrm{Spec}\,\mathcal{A}$ and we show that it is homeomorphic to the Ziegler spectrum $\mathrm{Z_g}\mathcal{A}$. Moreover, for a locally coherent category $\mathcal{A}$, we provide a new characterization of localizing subcategories of finite type of $\mathcal{A}$. We define a dimension for objects using the preorder $\leq$ on $\mathcal{A}\mathrm{Spec}\,\mathcal{A}$, which serves as a lower bound of the Gabriel-Krull dimension. Finally, we investigate the minimal atoms of a noetherian object $M$ in $\mathcal{A}$ and establish sufficient conditions for the finiteness of the number of minimal atoms of $M$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源