论文标题
几何状态的相关性
Correlations in geometric states
论文作者
论文摘要
在本文中,我们探讨了几何状态中的相关性。在这里,几何状态是指CFT中的状态,可以通过在半古典限制$ g \ the 0 $中通过大量的经典几何形状有效地描述。通过使用Holevo Informaion的上限,我们表明几何状态的covex组合不能是几何状态。为了了解热场双状态和永恒黑色HLE之间的二元性,我们构建了两个CFT的几个相关状态。在所有示例中,我们表明它们的相关性太弱,无法产生连接的时空。我们回顾了名为“量子不一致”的度量,并使用它来表征量子场理论中的经典和量子相关性。最后,我们讨论了两个间隔$ a $和$ b $之间的相关性与距离$ d $的2D CFT的距离$ d $,具有较大的中央电荷$ c $。该功能是共同信息$ i(ρ_{ab})$的相变。我们分析了$ρ_{ab} $的准生产状态。通过使用Tripartite的Koashi-Winter关系指出,$ a $ a和$ b $之间的量子和经典相关性可以表示为漏洞信息,这提供了对相关性作为无障碍信息的新理解。
In this paper we explore the correlations in the geometric states. Here the geometric state means the state in CFTs that can be effectively described by classical geometry in the bulk in the semi-classical limit $G\to 0$. By using the upper bound of Holevo informaion we show the covex combination of geometric states cannot be a geometric state. To understand the duality between thermofield double state and eternal black hle, we construct several correlated states of two CFTs. In all the examples we show their correlations are too weak to produce the a connected spacetime. we review the measure named quantum discord and use it to characterize the classical and quantum correlations in quantum field theories. Finally, we discuss the correlations between two intervals $A$ and $B$ with distance $d$ in the vacuum state of 2D CFTs with large central charge $c$. The feature is the phase transition of the mutual information $I(ρ_{AB})$. We analyse the quasi-product state of $ρ_{AB}$ for large $d$. By using the Koashi-Winter relation of tripartite states the quantum and classical correlations between $A$ and $B$ can expressed as Holevo information, which provides a new understanding of the correlations as accessible information.