论文标题
具有群集和审查数据的加速故障时间模型的有效GEHAN型估计
An efficient Gehan-type estimation for the accelerated failure time model with clustered and censored data
论文作者
论文摘要
在医学研究中,收集的协变量通常包含基本离群值。对于带有审查观察结果的聚类 /纵向数据,传统的GEHAN型估计量对存在的异常值是可靠的,但对协变量域中的异常值敏感,并且它也忽略了群集内相关性。为了考虑集群内相关性,变化的群集大小以及协变量中的异常值,我们提出了群集数据加速失效时间模型中参数估计的加权GEHAN型估计功能。我们提供所得估计量的渐近特性,并进行仿真研究,以评估在各种现实环境下所提出的方法的性能。仿真结果表明,所提出的方法对协变量域中存在的异常值具有鲁棒性,并在存在强大的集群内相关性时会导致更有效的估计器。最后,提出的方法应用于医疗数据集,因此获得了更可靠和令人信服的结果。
In medical studies, the collected covariates usually contain underlying outliers. For clustered /longitudinal data with censored observations, the traditional Gehan-type estimator is robust to outliers existing in response but sensitive to outliers in the covariate domain, and it also ignores the within-cluster correlations. To take account of within-cluster correlations, varying cluster sizes, and outliers in covariates, we propose weighted Gehan-type estimating functions for parameter estimation in the accelerated failure time model for clustered data. We provide the asymptotic properties of the resulting estimators and carry out simulation studies to evaluate the performance of the proposed method under a variety of realistic settings. The simulation results demonstrate that the proposed method is robust to the outliers existing in the covariate domain and lead to much more efficient estimators when a strong within-cluster correlation exists. Finally, the proposed method is applied to a medical dataset and more reliable and convincing results are hence obtained.