论文标题

使用图嵌入的监督域适应

Supervised Domain Adaptation using Graph Embedding

论文作者

Morsing, Lukas Hedegaard, Sheikh-Omar, Omar Ali, Iosifidis, Alexandros

论文摘要

使深度卷积神经网络表现良好,需要大量的培训数据。当可用标记的数据很小时,使用转移学习来利用相关较大的数据集(源)以提高小型数据集(目标)的性能通常是有益的。在转移学习方法中,域的适应方法假设两个域之间的分布被转移并尝试重新调整它们。在本文中,我们从降低维度的角度考虑了域的适应问题,并提出了基于图形嵌入的通用框架。我们没有解决广义特征值问题,而是将图形保护标准作为神经网络的损失,并以端到端的方式学习域不变特征转换。我们表明,所提出的方法导致了强大的领域适应框架。该框架的简单启发性实例化导致在两个最广泛使用的域Audaptation基准测试基准(Office31)和USPS数据集中的MNIST上具有最先进的性能。

Getting deep convolutional neural networks to perform well requires a large amount of training data. When the available labelled data is small, it is often beneficial to use transfer learning to leverage a related larger dataset (source) in order to improve the performance on the small dataset (target). Among the transfer learning approaches, domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them. In this paper, we consider the domain adaptation problem from the perspective of dimensionality reduction and propose a generic framework based on graph embedding. Instead of solving the generalised eigenvalue problem, we formulate the graph-preserving criterion as a loss in the neural network and learn a domain-invariant feature transformation in an end-to-end fashion. We show that the proposed approach leads to a powerful Domain Adaptation framework; a simple LDA-inspired instantiation of the framework leads to state-of-the-art performance on two of the most widely used Domain Adaptation benchmarks, Office31 and MNIST to USPS datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源