论文标题

DeepMal-恶意软件交通检测和分类的深度学习模型

DeepMAL -- Deep Learning Models for Malware Traffic Detection and Classification

论文作者

Marín, Gonzalo, Casas, Pedro, Capdehourat, Germán

论文摘要

强大的网络安全系统对于预防和减轻网络攻击不断增长的损害影响至关重要。近年来,基于机器学习的系统在网络安全应用程序中具有广受欢迎,通常考虑使用浅层模型的应用,这些模型依赖于专家,手工制作的输入功能的仔细工程。这种方法的主要局限性是,手工制作的功能在不同的情况和类型的攻击中无法表现良好。深度学习(DL)模型可以利用其从原始的,未经处理的数据中学习特征表示的能力来解决此限制。在本文中,我们探讨了DL模型在恶意软件网络流量的检测和分类的特定问题上的功能。作为对最新状态的主要优势,我们认为直接来自受监视字节流的原始测量值是提出的模型的输入,并评估包括数据包和流量级的不同原始交通特征表示。我们介绍了DeepMal,这是一种DL模型,能够捕获恶意流量的基本统计数据,而无需任何专家手工制作的功能。使用包含不同恶意软件家族的公开交通轨迹,我们表明DeepMal可以以高准确性检测和分类恶意软件流量,表现优于传统的浅层模型。

Robust network security systems are essential to prevent and mitigate the harming effects of the ever-growing occurrence of network attacks. In recent years, machine learning-based systems have gain popularity for network security applications, usually considering the application of shallow models, which rely on the careful engineering of expert, handcrafted input features. The main limitation of this approach is that handcrafted features can fail to perform well under different scenarios and types of attacks. Deep Learning (DL) models can solve this limitation using their ability to learn feature representations from raw, non-processed data. In this paper we explore the power of DL models on the specific problem of detection and classification of malware network traffic. As a major advantage with respect to the state of the art, we consider raw measurements coming directly from the stream of monitored bytes as input to the proposed models, and evaluate different raw-traffic feature representations, including packet and flow-level ones. We introduce DeepMAL, a DL model which is able to capture the underlying statistics of malicious traffic, without any sort of expert handcrafted features. Using publicly available traffic traces containing different families of malware traffic, we show that DeepMAL can detect and classify malware flows with high accuracy, outperforming traditional, shallow-like models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源