论文标题

完美循环函数和$ p $ -ADIC DELIGNE-LUSZTIG空间

Arc-descent for the perfect loop functor and $p$-adic Deligne--Lusztig spaces

论文作者

Ivanov, Alexander B.

论文摘要

我们证明,当地的非Archimedean field $ k $上的准标准方案$ x $的完美循环函数$ lx $ x $满足了弧度,从而增强了德林菲尔德的结果。然后,我们证明,对于一个未经夸大的还原$ g $,地图$ lg \ rightarrow l(g/b)$是$ v $ surpoxtive。这给出了Bouthier-česnavičius的同等特征结果(以étale拓扑为单位)的混合特征版本(适用于$ v $ - 学术)。 在本文的第二部分中,我们使用上述结果介绍了deligne-lusztig Spaces $ x_w(b)$ x_w(b)$ to normified $ p $ addic还原群体的概念。我们表明,在各种情况下,这些或骨是可以说明的,因此部分解决了Boyarchenko的问题。最后,我们表明自然覆盖空间$ \ dot x _ {\ dot w}(b)$是$ x_w(b)$的clopen子集的pro-étaletorsors,并分析了一些示例。

We prove that the perfect loop functor $LX$ of a quasi-projective scheme $X$ over a local non-archimedean field $k$ satisfies arc-descent, strengthening a result of Drinfeld. Then we prove that for an unramified reductive group $G$, the map $LG \rightarrow L(G/B)$ is a $v$-surjection. This gives a mixed characteristic version (for $v$-topology) of an equal characteristic result (in étale topology) of Bouthier--Česnavičius. In the second part of the article, we use the above results to introduce a well-behaved notion of Deligne--Lusztig spaces $X_w(b)$ attached to unramified $p$-adic reductive groups. We show that in various cases these sheaves are ind-representable, thus partially solving a question of Boyarchenko. Finally, we show that the natural covering spaces $\dot X_{\dot w}(b)$ are pro-étale torsors over clopen subsets of $X_w(b)$, and analyze some examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源