论文标题

单视2D CNN具有全自动非结节分类,用于肺结节检测的假阳性降低

Single-view 2D CNNs with Fully Automatic Non-nodule Categorization for False Positive Reduction in Pulmonary Nodule Detection

论文作者

Eun, Hyunjun, Kim, Daeyeong, Jung, Chanho, Kim, Changick

论文摘要

背景和目标:在肺结核检测中,第一阶段,候选检测旨在检测可疑的肺结核。但是,被检测到的候选人包括许多假阳性,因此在接下来的阶段,假阳性减少,这种假阳性可靠地降低。请注意,由于1)结节数量和非结节的数量不平衡以及2)非结节内多样性的不平衡。尽管使用3D卷积神经网络(CNN)的技术表现出了令人鼓舞的性能,但它们具有很高的计算复杂性,这阻碍了建立深层网络。为了有效解决这些问题,我们使用单个视图的合奏提出了一个新型框架,该框架使用单个视图的合奏表现优于现有的基于3D CNN的方法。 方法:与以前利用3D CNN的技术相比,我们2D CNN的合奏利用单视2D贴片来提高计算和内存效率。我们首先根据由自动编码器编码的功能对非结构进行分类。然后,所有2D CNN均通过使用相同的结节样品但具有不同类型的非结构的训练。通过扩展学习能力,该训练方案解决了从外观变化较大的非结构中提取代表性特征的困难。请注意,我们建议根据自动编码器和K-均值集群自动对非结构进行分类,而不是需要大量的放射科医生进行手动分类。

Background and Objective: In pulmonary nodule detection, the first stage, candidate detection, aims to detect suspicious pulmonary nodules. However, detected candidates include many false positives and thus in the following stage, false positive reduction, such false positives are reliably reduced. Note that this task is challenging due to 1) the imbalance between the numbers of nodules and non-nodules and 2) the intra-class diversity of non-nodules. Although techniques using 3D convolutional neural networks (CNNs) have shown promising performance, they suffer from high computational complexity which hinders constructing deep networks. To efficiently address these problems, we propose a novel framework using the ensemble of 2D CNNs using single views, which outperforms existing 3D CNN-based methods. Methods: Our ensemble of 2D CNNs utilizes single-view 2D patches to improve both computational and memory efficiency compared to previous techniques exploiting 3D CNNs. We first categorize non-nodules on the basis of features encoded by an autoencoder. Then, all 2D CNNs are trained by using the same nodule samples, but with different types of non-nodules. By extending the learning capability, this training scheme resolves difficulties of extracting representative features from non-nodules with large appearance variations. Note that, instead of manual categorization requiring the heavy workload of radiologists, we propose to automatically categorize non-nodules based on the autoencoder and k-means clustering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源