论文标题

使用约束编程跟踪道路使用者

Tracking Road Users using Constraint Programming

论文作者

Pineault, Alexandre, Bilodeau, Guillaume-Alexandre, Pesant, Gilles

论文摘要

在本文中,我们旨在改善城市场景中道路使用者的跟踪。我们为在多个对象跟踪(MOT)问题的逐个检测范式中发现的数据关联阶段提供了约束编程(CP)方法。这种方法比基于图的方法更有效地解决了数据关联问题,并且在分析多个帧时可以更好地处理组合爆炸。因为我们的重点是数据关联问题,所以我们的MOT方法仅使用简单的图像特征,这是每个帧的检测中心位置和颜色。约束在这两个功能和一般MOT问题上定义。例如,我们在轨迹上强制执行颜色外观保存,并限制帧之间的运动程度。使用过滤层是为了在使用CP之前消除检测候选物,并去除CP求解器产生的虚拟轨迹。我们提出的方法在跟踪数据集的电动车辆上进行了测试,并产生的结果优于UA-Detrac基准测试的最高方法。

In this paper, we aim at improving the tracking of road users in urban scenes. We present a constraint programming (CP) approach for the data association phase found in the tracking-by-detection paradigm of the multiple object tracking (MOT) problem. Such an approach can solve the data association problem more efficiently than graph-based methods and can handle better the combinatorial explosion occurring when multiple frames are analyzed. Because our focus is on the data association problem, our MOT method only uses simple image features, which are the center position and color of detections for each frame. Constraints are defined on these two features and on the general MOT problem. For example, we enforce color appearance preservation over trajectories and constrain the extent of motion between frames. Filtering layers are used in order to eliminate detection candidates before using CP and to remove dummy trajectories produced by the CP solver. Our proposed method was tested on a motorized vehicles tracking dataset and produces results that outperform the top methods of the UA-DETRAC benchmark.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源