论文标题
$ s^2 \ times s^2 $的真实拉格朗日托里的毫无根据
Unknottedness of real Lagrangian tori in $S^2\times S^2$
论文作者
论文摘要
我们证明了在单调$ s^2 \ times s^2 $中的Hamiltonian毫无根据,即$ s^2 \ times s^2 $ s^2 \ times s^2 $是Hamiltonian同位素是Clifford torus $ \ Mathbb {证明是基于颈伸的论点,格罗莫夫的叶子定理和cieliebak-schwingenheuer标准。
We prove the Hamiltonian unknottedness of real Lagrangian tori in the monotone $S^2\times S^2$, namely any real Lagrangian torus in $S^2\times S^2$ is Hamiltonian isotopic to the Clifford torus $\mathbb{T}_{\text{Clif}}$. The proof is based on a neck-stretching argument, Gromov's foliation theorem, and the Cieliebak-Schwingenheuer criterion.