论文标题
深盲视频超分辨率
Deep Blind Video Super-resolution
论文作者
论文摘要
现有的视频超分辨率(SR)算法通常假定降解过程中的模糊内核是已知的,并且不会对恢复中的模糊内核进行建模。但是,此假设不适合视频SR,通常会导致超平滑的超级分辨图像。在本文中,我们提出了一个深层卷积神经网络(CNN)模型,以通过模糊的内核建模方法求解视频SR。提出的深CNN模型包括运动模糊估计,运动估计和潜在图像恢复模块。运动模糊估计模块用于提供可靠的模糊内核。使用估计的模糊内核,我们基于视频SR的图像形成模型开发了一种图像反卷积方法,以生成中间的潜在图像,以便可以很好地恢复一些尖锐的图像内容。但是,生成的中间潜在图像可能包含伪影。为了生成高质量的图像,我们使用运动估计模块来探索来自相邻框架的信息,其中运动估计可以约束深CNN模型以获得更好的图像恢复。我们表明,所提出的算法能够生成更清晰的图像,并具有更精细的结构细节。广泛的实验结果表明,所提出的算法对最先进的方法有利。
Existing video super-resolution (SR) algorithms usually assume that the blur kernels in the degradation process are known and do not model the blur kernels in the restoration. However, this assumption does not hold for video SR and usually leads to over-smoothed super-resolved images. In this paper, we propose a deep convolutional neural network (CNN) model to solve video SR by a blur kernel modeling approach. The proposed deep CNN model consists of motion blur estimation, motion estimation, and latent image restoration modules. The motion blur estimation module is used to provide reliable blur kernels. With the estimated blur kernel, we develop an image deconvolution method based on the image formation model of video SR to generate intermediate latent images so that some sharp image contents can be restored well. However, the generated intermediate latent images may contain artifacts. To generate high-quality images, we use the motion estimation module to explore the information from adjacent frames, where the motion estimation can constrain the deep CNN model for better image restoration. We show that the proposed algorithm is able to generate clearer images with finer structural details. Extensive experimental results show that the proposed algorithm performs favorably against state-of-the-art methods.