论文标题

具有单数相互作用的McKean-Vlasov方程的存在和独特性

Existence and Uniqueness for McKean-Vlasov equations with singular interactions

论文作者

Zhao, Guohuan

论文摘要

我们调查了以下麦基恩 - vlasov方程在$ \ mathbb {r}^d $:\ [\ mathrm {d} x_t =σ(t,x_t,x_t,μ_{x_t})\ mathrm {d} \]其中$μ_{x_t} $是$ x_t $的定律。当$σ$满足某些非分类和连续性假设时,解决方案的存在,并且当$ b $符合某些集成性条件时,并且(广义)总变化距离中的连续性要求。此外,在Lipschitz类型的其他连续性假设下建立了唯一性。

We investigate the well-posedness of following McKean-Vlasov equation in $\mathbb{R}^d$: \[ \mathrm{d} X_t=σ(t,X_t, μ_{X_t})\mathrm{d} W_t+b(t, X_t, μ_{X_t}) \mathrm{d} t, \] where $μ_{X_t}$ is the law of $X_t$. The existence of solutions is demonstrated when $σ$ satisfies certain non-degeneracy and continuity assumptions, and when $b$ meets some integrability conditions, and continuity requirements in the (generalized) total variation distance. Furthermore, uniqueness is established under additional continuity assumptions of a Lipschitz type.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源