论文标题
代数分支程序,边界复杂性和切线空间
Algebraic Branching Programs, Border Complexity, and Tangent Spaces
论文作者
论文摘要
尼桑(Nisan)在1991年表明,最小的非交通单(源,接收器)代数分支程序(ABP)的宽度是由特定矩阵的等级给出的,以计算非交通性多项式。这意味着,最多$ k $具有ABP宽度复杂性的一组非交通性多项式是Zariski封闭的,这是几何复杂性理论中的重要属性。因此,近似值无法减少所需的ABP宽度。 福布斯提到的是,从单个(源,接收器)ABP到追踪ABP时,此结果可能会破裂。我们证明这是正确的。此外,我们研究了交换性单调设置,并证明了与Nisan相似的结果,但与分析封闭有关。我们在这里观察到相同的行为:对于单个(源,接收器)ABP,最多关闭了具有ABP宽度复杂性的多项式集合,而对于Trace ABPS则没有关闭。证明揭示了切线空间与ABP流量的矢量空间之间的有趣联系。我们对VQP和VNP的关闭进行了其他观察,这使我们能够在两个类之间建立分离。
Nisan showed in 1991 that the width of a smallest noncommutative single-(source,sink) algebraic branching program (ABP) to compute a noncommutative polynomial is given by the ranks of specific matrices. This means that the set of noncommutative polynomials with ABP width complexity at most $k$ is Zariski-closed, an important property in geometric complexity theory. It follows that approximations cannot help to reduce the required ABP width. It was mentioned by Forbes that this result would probably break when going from single-(source,sink) ABPs to trace ABPs. We prove that this is correct. Moreover, we study the commutative monotone setting and prove a result similar to Nisan, but concerning the analytic closure. We observe the same behavior here: The set of polynomials with ABP width complexity at most $k$ is closed for single-(source,sink) ABPs and not closed for trace ABPs. The proofs reveal an intriguing connection between tangent spaces and the vector space of flows on the ABP. We close with additional observations on VQP and the closure of VNP which allows us to establish a separation between the two classes.