论文标题

产生功能和拓扑复杂性

Generating functions and topological complexity

论文作者

Farber, Michael, Kishimoto, Daisuke, Stanley, Donald

论文摘要

我们研究了理性的猜想,该猜想指出(a)正式功率系列$ \ sum_ {r \ ge 1} \ tc_ {r+1}(x)(x)\ cdot x^r $代表$ x $的合理函数,单个订单2 pole 2 in $ x = 1 $ and(b)pole pole cat $ x等等$ \ cat $ \ cat(x)。这里$ x $是有限的CW-Complex,对于$ r \ ge 2 $,符号$ \ tc_r(x)$表示其$ r $ $ th的顺序拓扑复杂性。我们分析了一个示例(违反了Ganea的猜想),并得出结论,理性猜想的一部分通常是错误的。此外,我们建立了合理性猜想的共同学版本。

We examine the rationality conjecture which states that (a) the formal power series $\sum_{r\ge 1} \tc_{r+1}(X)\cdot x^r$ represents a rational function of $x$ with a single pole of order 2 at $x=1$ and (b) the leading coefficient of the pole equals $\cat(X)$. Here $X$ is a finite CW-complex and for $r\ge 2$ the symbol $\tc_r(X)$ denotes its $r$-th sequential topological complexity. We analyse an example (violating the Ganea conjecture) and conclude that part (b) of the rationality conjecture is false in general. Besides, we establish a cohomological version of the rationality conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源