论文标题
与身份插入的资源有效的零噪声外推
Resource Efficient Zero Noise Extrapolation with Identity Insertions
论文作者
论文摘要
除了读数误差外,在嘈杂的中间尺度量子(NISQ)计算机上的复杂量子算法的主要挑战是两个Qubit Gate噪声。这些错误是对量子化学,核物理学,高能量物理以及其他新兴的科学和工业应用进行准确计算的重大挑战。有两个提案来减轻两倍的门错误:误差校正代码和零噪声外推。本文着重于后者,详细研究它,并提出对现有方法的修改。特别是,我们提出了一种随机身份插入方法(RIIM),该方法可以实现竞争性渐近精度,而大门却少于传统的固定身份插入方法(FIIM)。例如,纠正领先顺序去极化门噪声需要$ n_ \ text {cnot}+2 $ riim的门,而不是$ 3n_ \ text {cnot} $ fiim的门。这种重要的资源节省可能会为近期量子硬件的最新计算提供更准确的结果。
In addition to readout errors, two-qubit gate noise is the main challenge for complex quantum algorithms on noisy intermediate-scale quantum (NISQ) computers. These errors are a significant challenge for making accurate calculations for quantum chemistry, nuclear physics, high energy physics, and other emerging scientific and industrial applications. There are two proposals for mitigating two-qubit gate errors: error-correcting codes and zero-noise extrapolation. This paper focuses on the latter, studying it in detail and proposing modifications to existing approaches. In particular, we propose a random identity insertion method (RIIM) that can achieve competitive asymptotic accuracy with far fewer gates than the traditional fixed identity insertion method (FIIM). For example, correcting the leading order depolarizing gate noise requires $n_\text{CNOT}+2$ gates for RIIM instead of $3n_\text{CNOT}$ gates for FIIM. This significant resource saving may enable more accurate results for state-of-the-art calculations on near term quantum hardware.