论文标题
使用深厚的强化学习中的智能电表中的隐私成本管理
Privacy-Cost Management in Smart Meters Using Deep Reinforcement Learning
论文作者
论文摘要
智能电表(SMS)几乎实时地向公用事业提供商(UP)报告了消费者的电力,从而在智能电网中发挥关键规则。但是,这可能会泄漏有关消费者到UP或第三方的敏感信息。最近的工作利用了储能设备的可用性,例如可充电电池(RB),以便为消费者提供额外的额外能源成本的私密性。在本文中,提出了一个基于无模型的深钢筋学习算法的隐私管理单元(PCMU),称为Deep Double Q-Learning(DDQL)。在实际的SMS数据上评估了经验结果,以将DDQL与最新的ART(即经典Q学习(CQL))进行比较。此外,研究了两种具体案例,研究了该方法的性能,攻击者旨在推断实际需求负荷和住宅的占用状态。最后,提供了抽象的信息理论表征。
Smart meters (SMs) play a pivotal rule in the smart grid by being able to report the electricity usage of consumers to the utility provider (UP) almost in real-time. However, this could leak sensitive information about the consumers to the UP or a third-party. Recent works have leveraged the availability of energy storage devices, e.g., a rechargeable battery (RB), in order to provide privacy to the consumers with minimal additional energy cost. In this paper, a privacy-cost management unit (PCMU) is proposed based on a model-free deep reinforcement learning algorithm, called deep double Q-learning (DDQL). Empirical results evaluated on actual SMs data are presented to compare DDQL with the state-of-the-art, i.e., classical Q-learning (CQL). Additionally, the performance of the method is investigated for two concrete cases where attackers aim to infer the actual demand load and the occupancy status of dwellings. Finally, an abstract information-theoretic characterization is provided.