论文标题

liouville捆绑包的全态曲线和延续图

Holomorphic curves and continuation maps in Liouville bundles

论文作者

Oh, Yong-Geun, Tanaka, Hiro Lee

论文摘要

我们构建了一个未包装的浮动理论,用于捆绑的Liouville部门。特别是,我们构建了一个兼容的Liouville捆绑包纤维的未包装福卡亚类别的集合,并证明了这种环境中延续图的两个自然构造具有兼容​​的作用。这些结构在[OT19]中被利用,以在包裹的福卡亚类别上构建谎言组的同型相干行动,从而证明了Teleman 2014 ICM地址的猜想。

We construct an unwrapped Floer theory for bundles of Liouville sectors. In particular, we construct a compatible collection of unwrapped Fukaya categories of fibers of a Liouville bundle, and prove that the two natural constructions of continuation maps in this setting behave compatibly. These constructions are exploited in [OT19] to construct homotopically coherent actions of Lie groups on wrapped Fukaya categories, thereby proving a conjecture from Teleman's 2014 ICM address.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源