论文标题

字符串字段和$ a _ {\ infty} $ bv master方程的结构

Perturbative path-integral of string field and the $A_{\infty }$ structure of the BV master equation

论文作者

Masuda, Toru, Matsunaga, Hiroaki

论文摘要

扰动的路径综合性给出了(量子)$ a _ {\ infty} $结构的形态,每个量子场理论的固有固有性,我们根据同源扰动明确显示。众所周知,在BV形式主义中,任何有效的作用也解决了BV主方程,这意味着可以将路径综合性理解为BV差异的形态。由于BV Master方程的每个解决方案都是与(量子)$ a _ {\ infty} $结构的一对S对应关系,因此路径综合保留了量子场理论的本质$ a _ {\ infty} $结构的结构交换性。我们将这些想法应用于字符串字段理论,并基于扰动路径综合的数量(重新),例如具有有限$α^{\ prime} $的有效理论,降低规格和非物质学位,$ s $ -mmatrix和衡量不变的可观察力。

The perturbative path-integral gives a morphism of the (quantum) $A_{\infty }$ structure intrinsic to each quantum field theory, which we show explicitly on the basis of the homological perturbation. As is known, in the BV formalism, any effective action also solves the BV master equation, which implies that the path-integral can be understood as a morphism of the BV differential. Since each solution of the BV master equation is in one-to-one correspondence with a (quantum) $A_{\infty }$ structure, the path-integral preserves this intrinsic $A_{\infty }$ structure of quantum field theory, where $A_{\infty }$ reduces to $L_{\infty }$ whenever multiplications of space-time fields are graded commutative. We apply these ideas to string field theory and (re-)derive some quantities based on the perturbative path-integral, such as effective theories with finite $α^{\prime }$, reduction of gauge and unphysical degrees, $S$-matrix and gauge invariant observables.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源