论文标题

随机扰动的育种向量

Stochastically perturbed bred vectors

论文作者

Giggins, Brent, Gottwald, Georg A.

论文摘要

繁殖方法是一种计算廉价的程序,可以生成最初的条件,用于集合预测,哪些项目将投影到相关的天气增长模式上。但是,育种载体的合奏通常缺乏多样性,并且与领先的Lyapunov载体保持一致,这严重影响了它们的统计可靠性。在先前的工作中,我们在多尺度系统的背景下开发了随机扰动的育种载体(SPBV)和随机绘制的育种向量(RDBV)。在这里,我们探索该方法可以扩展到不扩大分离的情况下,并检查单尺度Lorenz 96模型中随机修改的繁殖向量的性能。特别是,我们表明,SPBV的性能至关重要地取决于育种向量的定位程度。发现与多尺度系统相反,本地化对SPBV在系统中的应用不利,而从同化数据中初始化时,本地化是没有规模分开的。但是,对于局部繁殖量较弱,SPBV的集合构成了一个可靠的合奏,与经典的繁殖媒介相比,具有改进的合奏预测技能,同时仍然保留了该育种方法的低计算成本。 RDBV被证明具有卓越的预测技能,并在弱点的情况下形成了可靠的合奏,但是在强烈本地化的情况下,它们并不构成可靠的集合并且过度存在。

The breeding method is a computationally cheap procedure to generate initial conditions for ensemble forecasting which project onto relevant synoptic growing modes. Ensembles of bred vectors, however, often lack diversity and align with the leading Lyapunov vector, which severely impacts their statistical reliability. In previous work we developed stochastically perturbed bred vectors (SPBVs) and random draw bred vectors (RDBVs) in the context of multi-scale systems. Here we explore when this method can be extended to systems without scale separation, and examine the performance of the stochastically modified bred vectors in the single scale Lorenz 96 model. In particular, we show that the performance of SPBVs crucially depends on the degree of localisation of the bred vectors. It is found that, contrary to the case of multi-scale systems, localisation is detrimental for applications of SPBVs in systems without scale-separation when initialised from assimilated data. In the case of weakly localised bred vectors, however, ensembles of SPBVs constitute a reliable ensemble with improved ensemble forecasting skills compared to classical bred vectors, while still preserving the low computational cost of the breeding method. RDBVs are shown to have superior forecast skill and form a reliable ensemble in weakly localised situations, but in situations when they are strongly localised they do not constitute a reliable ensemble and are over-dispersive.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源