论文标题
高维椭圆形汇聚到高斯空间
High-dimensional ellipsoids converge to Gaussian spaces
论文作者
论文摘要
我们证明了(实心)椭圆形的收敛性与格罗莫夫浓度/弱拓扑中的高斯空间的收敛性,因为尺寸差异为无穷大。这给出了浓度拓扑中不可约的非平整收敛序列的第一个示例,其中“不可减至的非平凡”大致意味着不是由征税家族或盒子收敛序列构造的。
We prove the convergence of (solid) ellipsoids to a Gaussian space in Gromov's concentration/weak topology as the dimension diverges to infinity. This gives the first discovered example of an irreducible nontrivial convergent sequence in the concentration topology, where 'irreducible nontrivial' roughly means to be not constructed from Levy families nor box convergent sequences.