论文标题

通过在线学习的灵活接头机器人的自适应神经轨迹跟踪控制

Adaptive Neural Trajectory Tracking Control for Flexible-Joint Robots with Online Learning

论文作者

Chen, Shuyang, Wen, John

论文摘要

协作机器人和空间操纵器具有明显的关节灵活性。它使控制设计复杂化,损害控制带宽,并限制了跟踪精度。对柔性关节动力学的不精确知识加剧了挑战。在本文中,我们提出了一种用于控制灵活接头机器人的新控制体系结构。我们的方法使用多层神经网络来近似前馈控制所需的未知动态。该网络可以被视为机器人动力学的线性内形表示,而机器人动力学的非线性基础连接到线性输出层。输出层权重根据跟踪误差和非线性基础更新。非线性基础的内部权重通过在线反向传播更新,以进一步减少跟踪错误。使用时间尺度分离来减少两个步骤的耦合 - 与输出层权重的更新相比,内部权重的更新速率较低。随着输出层权重的更新,我们的控制器可以快速适应未知的动态变化和干扰(例如附加负载)。内部权重的更新将继续改善非线性基础函数的收敛性。我们在“外循环”控件下显示了提出的方案的稳定性,其中指挥的关节位置被视为控制输入。进行了模拟和物理实验,以证明在百特机器人上提出的控制器的性能,该机器人由于串联弹性关节执行器而表现出显着的关节柔韧性。

Collaborative robots and space manipulators contain significant joint flexibility. It complicates the control design, compromises the control bandwidth, and limits the tracking accuracy. The imprecise knowledge of the flexible joint dynamics compounds the challenge. In this paper, we present a new control architecture for controlling flexible-joint robots. Our approach uses a multi-layer neural network to approximate unknown dynamics needed for the feedforward control. The network may be viewed as a linear-in-parameter representation of the robot dynamics, with the nonlinear basis of the robot dynamics connected to the linear output layer. The output layer weights are updated based on the tracking error and the nonlinear basis. The internal weights of the nonlinear basis are updated by online backpropagation to further reduce the tracking error. To use time scale separation to reduce the coupling of the two steps - the update of the internal weights is at a lower rate compared to the update of the output layer weights. With the update of the output layer weights, our controller adapts quickly to the unknown dynamics change and disturbances (such as attaching a load). The update of the internal weights would continue to improve the converge of the nonlinear basis functions. We show the stability of the proposed scheme under the "outer loop" control, where the commanded joint position is considered as the control input. Simulation and physical experiments are conducted to demonstrate the performance of the proposed controller on a Baxter robot, which exhibits significant joint flexibility due to the series-elastic joint actuators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源