论文标题
Sitter Space在半经典重力中的全息二元性和模式稳定性
Holographic duality and mode stability of de Sitter space in semiclassical gravity
论文作者
论文摘要
我们采用全息二元性来计算$ \ langle t_ {μν} \ rangle $在强耦合的$ \ mathcal n = 4 $ supersymmetric yang-mills理论,然后研究半经典的Einstein田间方程的进化,由$ \ langle t_ {在DE Sitter空间上进行线性化,我们发现运动的半经典方程将其降低到四维标量波方程,并耦合到五维标量波方程。我们计算这些方程式的模式频谱,并发现当$ h <h_c $ and Mode稳定时,Hubble常数$ H_C $的临界值是不稳定的。
We employ holographic duality to compute $\langle T_{μν} \rangle$ in strongly coupled $\mathcal N = 4$ supersymmetric Yang-Mills theory and then study evolution of the semiclassical Einstein field equations sourced by $\langle T_{μν} \rangle$. Linearizing about de Sitter space, we find that the semiclassical equations of motion reduce to a four dimensional scalar wave equation coupled to a five dimensional scalar wave equation. We compute the mode spectrum of these equations and find that there exists a critical value of the Hubble constant $H_c$ for which de Sitter space is unstable when $H < H_c$ and mode stable when $H > H_c$.