论文标题
Deepurl:水下相对定位的深度姿势估计框架
DeepURL: Deep Pose Estimation Framework for Underwater Relative Localization
论文作者
论文摘要
在本文中,我们提出了一种实时深度学习方法,用于从单个图像确定自动水下车辆(AUV)的6D相对姿势。一个自主机器人团队将自己定位于沟通受限的水下环境中,对于许多应用程序,例如水下探索,映射,多机器人车队和其他多机器人任务。由于在水下有准确的6D姿势收集地面真相图像的严重困难,这项工作利用了虚幻游戏引擎模拟中的渲染图像进行训练。使用图像到图像翻译网络来弥合渲染和真实图像之间的差距,从而产生用于训练的合成图像。提出的方法可预测来自单个图像的6D姿势为2D图像关键点,代表AUV的3D模型的8个角,然后使用基于RANSAC的PNP确定相机坐标中的6D姿势。具有不同相机的实际水下环境(游泳池和海洋)中的实验结果证明了该技术在最新方法上的翻译误差和方向误差方面的鲁棒性和准确性。该代码公开可用。
In this paper, we propose a real-time deep learning approach for determining the 6D relative pose of Autonomous Underwater Vehicles (AUV) from a single image. A team of autonomous robots localizing themselves in a communication-constrained underwater environment is essential for many applications such as underwater exploration, mapping, multi-robot convoying, and other multi-robot tasks. Due to the profound difficulty of collecting ground truth images with accurate 6D poses underwater, this work utilizes rendered images from the Unreal Game Engine simulation for training. An image-to-image translation network is employed to bridge the gap between the rendered and the real images producing synthetic images for training. The proposed method predicts the 6D pose of an AUV from a single image as 2D image keypoints representing 8 corners of the 3D model of the AUV, and then the 6D pose in the camera coordinates is determined using RANSAC-based PnP. Experimental results in real-world underwater environments (swimming pool and ocean) with different cameras demonstrate the robustness and accuracy of the proposed technique in terms of translation error and orientation error over the state-of-the-art methods. The code is publicly available.