论文标题
具有神经流的星系簇的动态质量推断
Dynamical mass inference of galaxy clusters with neural flows
论文作者
论文摘要
我们提出了一种直接从其各自的相空间分布的算法,用于推断星系簇的动态质量,即观察到的视线速度和从集群中心的星系距离的距离。我们的方法采用了正常的流动,一个深层神经网络,能够学习任意高维概率分布,并在适当的程度上固有地说明了跨pe骨星系的存在,而这些跨媒介星系没有与给定的群集,这是动态质量测量的主要污染物。我们验证和展示神经流量方法的性能,以鲁棒性从逼真的模拟集群目录中推断出簇的动态质量。我们新颖的算法的一个关键方面是,它产生了特定群集质量的概率密度函数,从而提供了一种量化不确定性的原则方法,与常规的机器学习方法相比。神经网络质量预测应用于带有介入者的污染目录时,具有0.028 DEX的平均总体对数残留散射,其对数正态散射为0.126 DEX,在中间至较高质量范围内,降低了0.089 DEX的dex dex。相对于经典的群集质量缩放关系,与速度分散相关的经典群集质量缩放关系几乎有四倍,并且最近提出的机器学习方法胜过速度。我们还将神经流量质量估计器应用于具有强大的动力学质量估计值的一些精心研究的簇的星系观测,进一步证实了我们算法的功效。
We present an algorithm for inferring the dynamical mass of galaxy clusters directly from their respective phase-space distributions, i.e. the observed line-of-sight velocities and projected distances of galaxies from the cluster centre. Our method employs normalizing flows, a deep neural network capable of learning arbitrary high-dimensional probability distributions, and inherently accounts, to an adequate extent, for the presence of interloper galaxies which are not bounded to a given cluster, the primary contaminant of dynamical mass measurements. We validate and showcase the performance of our neural flow approach to robustly infer the dynamical mass of clusters from a realistic mock cluster catalogue. A key aspect of our novel algorithm is that it yields the probability density function of the mass of a particular cluster, thereby providing a principled way of quantifying uncertainties, in contrast to conventional machine learning approaches. The neural network mass predictions, when applied to a contaminated catalogue with interlopers, have a mean overall logarithmic residual scatter of 0.028 dex, with a log-normal scatter of 0.126 dex, which goes down to 0.089 dex for clusters in the intermediate to high mass range. This is an improvement by nearly a factor of four relative to the classical cluster mass scaling relation with the velocity dispersion, and outperforms recently proposed machine learning approaches. We also apply our neural flow mass estimator to a compilation of galaxy observations of some well-studied clusters with robust dynamical mass estimates, further substantiating the efficacy of our algorithm.