论文标题
离散时空中的可集成矩阵模型
Integrable Matrix Models in Discrete Space-Time
论文作者
论文摘要
我们引入了一类可集成的动力学系统,用于在离散的时空晶格上传播的相互作用的经典矩阵式值,并实现了由基本象征性的两体映射构建的多体电路。这些模型提供了具有复杂的grassmannian歧管的非相关性$σ$模型的有效整合Trotterization,作为目标空间,包括特殊情况,是Landau-Lifshitz Field Theory of Complect offersive射击空间的高级类似物。作为一种应用,我们研究了在局部局部均衡状态下的noe电荷的运输。我们发现在Kardar-Parisi-Zhang通用类中,明确的签名是超级延伸行为,无论选择的根本基础全球统一对称群和紧凑型相位空间的商结构如何,从而提供了强烈的超单物理学指示。
We introduce a class of integrable dynamical systems of interacting classical matrix-valued fields propagating on a discrete space-time lattice, realized as many-body circuits built from elementary symplectic two-body maps. The models provide an efficient integrable Trotterization of non-relativistic $σ$-models with complex Grassmannian manifolds as target spaces, including, as special cases, the higher-rank analogues of the Landau-Lifshitz field theory on complex projective spaces. As an application, we study transport of Noether charges in canonical local equilibrium states. We find a clear signature of superdiffusive behavior in the Kardar-Parisi-Zhang universality class, irrespectively of the chosen underlying global unitary symmetry group and the quotient structure of the compact phase space, providing a strong indication of superuniversal physics.