论文标题
基于管子的鲁棒模型预测控制,用于模拟的分布式参数系统(扩展版本)
Tube-based Robust Model Predictive Control for a Distributed Parameter System Modeled as a Polytopic LPV (extended version)
论文作者
论文摘要
分布式参数系统(DPS)作为部分微分方程(PDE)配制。特别是,在随着时间变化的边界条件下,PDE引入力耦合。在柔性堆叠起重机(STC)的情况下,引入了非线性耦合。因此,可以使用非线性模型预测控制(NMPC)来解决在线轨迹计划和跟踪。然而,由于NMPC的计算需求很高,本文讨论了将非线性嵌入线性参数变化(LPV)系统中的可能性,因此可以使用数值低的线性MPC。在强大的管MPC(TMPC)的背景下,所得的不匹配被视为参数和添加剂不确定性。对于建议的方法,大多数计算都是离线进行的。仅在线进行简单的凸二次程序(QP)。另外,简要提出了软约束的扩展。模拟结果用于说明尽管不确定性,但提出的方法的良好性能,闭环稳定性和递归可行性。
Distributed parameter systems (DPS) are formulated as partial differential equations (PDE). Especially, under time-varying boundary conditions, PDE introduce force coupling. In the case of the flexible stacker crane (STC), nonlinear coupling is introduced. Accordingly, online trajectory planning and tracking can be addressed using a nonlinear model predictive control (NMPC). However, due to the high computational demands of a NMPC, this paper discusses a possibility of embedding nonlinearities inside a linear parameter varying (LPV) system and thus make a use of a numerically low-demanding linear MPC. The resulting mismatches are treated as parametric and additive uncertainties in the context of robust tube-based MPC (TMPC). For the proposed approach, most of the computations are carried out offline. Only a simple convex quadratic program (QP) is conducted online. Additionally a soft-constrained extension was briefly proposed. Simulation results are used to illustrate the good performance, closed-loop stability and recursive feasibility of the proposed approach despite uncertainties.