论文标题
在实际立方表面上排名两个免费组和整数点
Rank two free groups and integer points on real cubic surfaces
论文作者
论文摘要
Markoff立方体上的整数点与双曲几何形状中的问题密切相关。在先前与Igor Rivin的作品中,我们研究了刺穿的圆环的大地长度函数的规律性。在这里,我们将这项工作扩展到三个洞的球体和相关的Orbifolds。
Counting integer points on the Markoff cubic is closely related to questions in hyperbolic geometry. In a previous work with Igor Rivin we investigated the regularity of the geodesic length function for a punctured torus. Here we extend this work to the three holed sphere and related orbifolds.