论文标题

超紧凑型X射线自由电子激光器

An Ultra-Compact X-Ray Free-Electron Laser

论文作者

Rosenzweig, J. B., Majernik, N., Robles, R. R., Andonian, G., Camacho, O., Fukasawa, A., Kogar, A., Lawler, G., Miao, Jianwei, Musumeci, P., Naranjo, B., Sakai, Y., Candler, R., Pound, B., Pellegrini, C., Emma, C., Halavanau, A., Hastings, J., Li, Z., Nasr, M., Tantawi, S., Anisimov, P., Carlsten, B., Krawczyk, F., Simakov, E., Faillace, L., Ferrario, M., Spataro, B., Karkare, S., Maxson, J., Ma, Y., Wurtele, J., Murokh, A., Zholents, A., Cianchi, A., Cocco, D.

论文摘要

在光束物理学领域,两个边境主题在众多科学中有可能使新方法进行新的发现方法,这两个边境主题已成为中心舞台。这些区域是:高级,高梯度加速技术和X射线无电子激光器(XFELS)。此外,这两个领域的婚姻充满了浓厚的兴趣,目的是产生非常紧凑的XFEL。在这种情况下,高梯度射频低温铜结构研究的最新进展为使用250至500 mV/m之间的表面电场打开了大门。这种方法可以预见到具有六维光束亮度的新一代光注射器,超出了当前最新的亮度。此进步是启用超紧凑型XFEL(UC-XFEL)的必不可少的要素。此外,可以将这些明亮的光束加速到GEV尺度不到10米。这样的喷油器与基于逆电子激光的逆电子激光束技术结合使用,可以产生具有前所未有的光束质量的多ka梁,并通过〜50 nm-rad归一化的发射量进行了定量。当将这些横梁注入创新的短周期(1-10毫米)时,散发器唯一地使UC-Xfels具有与大学规模的实验室一致的足迹。我们描述了这种新颖的光源的结构和预测性能,该源有望每脉冲的光子产生几%的现有XFEL源。我们审查实施问题,包括集体束效应,紧凑型X射线光学系统以及其他相关技术挑战。为了说明这种光源从根本上改变Xfels的当前范式的潜力,其访问有限,我们研究了可能从这种表现XFEL科学的新模型中获利的生物学,化学,材料,原子理,工业和医学中的可能应用。

In the field of beam physics, two frontier topics have taken center stage due to their potential to enable new approaches to discovery in a wide swath of science. These areas are: advanced, high gradient acceleration techniques, and x-ray free electron lasers (XFELs). Further, there is intense interest in the marriage of these two fields, with the goal of producing a very compact XFEL. In this context, recent advances in high gradient radio-frequency cryogenic copper structure research have opened the door to the use of surface electric fields between 250 and 500 MV/m. Such an approach is foreseen to enable a new generation of photoinjectors with six-dimensional beam brightness beyond the current state-of-the-art by well over an order of magnitude. This advance is an essential ingredient enabling an ultra-compact XFEL (UC-XFEL). In addition, one may accelerate these bright beams to GeV scale in less than 10 meters. Such an injector, when combined with inverse free electron laser-based bunching techniques can produce multi-kA beams with unprecedented beam quality, quantified by ~50 nm-rad normalized emittances. These beams, when injected into innovative, short-period (1-10 mm) undulators uniquely enable UC-XFELs having footprints consistent with university-scale laboratories. We describe the architecture and predicted performance of this novel light source, which promises photon production per pulse of a few percent of existing XFEL sources. We review implementation issues including collective beam effects, compact x-ray optics systems, and other relevant technical challenges. To illustrate the potential of such a light source to fundamentally change the current paradigm of XFELs with their limited access, we examine possible applications in biology, chemistry, materials, atomic physics, industry, and medicine which may profit from this new model of performing XFEL science.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源