论文标题
使用图神经网络自动化僵尸网络检测
Automating Botnet Detection with Graph Neural Networks
论文作者
论文摘要
僵尸网络现在是许多网络攻击的主要来源,例如DDOS攻击和垃圾邮件。但是,大多数传统的检测方法都严重依赖于启发式设计的多阶段检测标准。在本文中,我们考虑了使用现代深度学习技术自动学习政策的神经网络设计挑战。为了生成培训数据,我们将僵尸网络连接综合使用,其基本通信模式在大规模真实网络上叠加为数据集。为了捕获集中式僵尸网络的重要分层结构和分散僵尸网络的快速混合结构,我们量身定制图形神经网络(GNN)以检测这些结构的性质。实验结果表明,与以前的非学习方法相比,GNN能够更好地捕获僵尸网络结构,并使用适当的数据训练,并且更深的GNN对于学习困难的僵尸网络拓扑至关重要。我们认为,我们的数据和研究对于网络安全和图形学习社区都有用。
Botnets are now a major source for many network attacks, such as DDoS attacks and spam. However, most traditional detection methods heavily rely on heuristically designed multi-stage detection criteria. In this paper, we consider the neural network design challenges of using modern deep learning techniques to learn policies for botnet detection automatically. To generate training data, we synthesize botnet connections with different underlying communication patterns overlaid on large-scale real networks as datasets. To capture the important hierarchical structure of centralized botnets and the fast-mixing structure for decentralized botnets, we tailor graph neural networks (GNN) to detect the properties of these structures. Experimental results show that GNNs are better able to capture botnet structure than previous non-learning methods when trained with appropriate data, and that deeper GNNs are crucial for learning difficult botnet topologies. We believe our data and studies can be useful for both the network security and graph learning communities.