论文标题

二维形状在一维线上的随机顺序吸附的动力学

Kinetics of random sequential adsorption of two-dimensional shapes on a one-dimensional line

论文作者

Cieśla, Michał, Kozubek, Konrad, Kubala, Piotr, Baule, Adrian

论文摘要

研究了由二维椭圆,球形框,矩形和放置在一维线上的二维椭圆形成的饱和随机顺序吸附堆,以检查有关包装生长动力学的分析预测[A.A.A.A.A.鲍尔,物理。牧师。 119,028003(2017)]。结果表明,动力学受幂律的约束,指数$ d = 1.5 $和$ 2.0 $,分别由椭圆和矩形构建的包装,这与分析预测一致。但是,对于中等宽度与高度比的球形固定器和二聚体,观察到这两个值之间的过渡。我们认为,由于接触函数的特性,这种过渡是针对球形框的有限尺寸效应。通常,看来包装生长的动力学即使在很大的包装中也取决于包装尺寸。

Saturated random sequential adsorption packings built of two-dimensional ellipses, spherocylinders, rectangles, and dimers placed on a one-dimensional line are studied to check analytical prediction concerning packing growth kinetics [A. Baule, Phys. Rev. Let. 119, 028003 (2017)]. The results show that the kinetics is governed by the power-law with the exponent $d=1.5$ and $2.0$ for packings built of ellipses and rectangles, respectively, which is consistent with analytical predictions. However, for spherocylinders and dimers of moderate width-to-height ratio, a transition between these two values is observed. We argue that this transition is a finite size effect that arises for spherocylinders due to the properties of the contact function. In general, it appears that the kinetics of packing growth can depend on packing size even for very large packings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源