论文标题

利用视力和运动学数据来改善用于机器人手术的生物力学软组织模拟的现实主义

Leveraging Vision and Kinematics Data to Improve Realism of Biomechanic Soft-tissue Simulation for Robotic Surgery

论文作者

Wu, Jie Ying, Kazanzides, Peter, Unberath, Mathias

论文摘要

目的手术模拟在外科医生教育和开发算法中起着越来越重要的作用,使机器人能够执行手术子任务。为了模拟解剖结构,已将有限元方法(FEM)模拟作为计算准确软组织变形的金标准。不幸的是,它们的精度高度取决于模拟参数,这可能很难获得。 在这项工作中,我们研究了在任何机器人内窥镜外科手术过程中获取的实时数据如何用于纠正不准确的FEM模拟结果。由于FEM是根据初始参数计算的,并且无法直接合并观测值,因此我们建议添加一个校正因子,以解释模拟和观测之间的差异。我们训练网络以预测此校正因子。 结果为了评估我们的方法,我们使用开源DA Vinci手术系统来探测软组织幻影并在模拟中重播相互作用。我们训练网络以校正预测的网格位置与测量点云之间的差异。这会导致平均距离提高15-30%,这表明了我们在大量仿真参数中方法的有效性。 结论我们展示了朝着协同结合基于模型的仿真和实时观察的好处的框架的第一步。它纠正了模拟参数不准确的模拟和场景之间的差异。这可以为外科医生提供更准确的模拟环境,并可以通过训练算法的更好的数据。

Purpose Surgical simulations play an increasingly important role in surgeon education and developing algorithms that enable robots to perform surgical subtasks. To model anatomy, Finite Element Method (FEM) simulations have been held as the gold standard for calculating accurate soft-tissue deformation. Unfortunately, their accuracy is highly dependent on the simulation parameters, which can be difficult to obtain. Methods In this work, we investigate how live data acquired during any robotic endoscopic surgical procedure may be used to correct for inaccurate FEM simulation results. Since FEMs are calculated from initial parameters and cannot directly incorporate observations, we propose to add a correction factor that accounts for the discrepancy between simulation and observations. We train a network to predict this correction factor. Results To evaluate our method, we use an open-source da Vinci Surgical System to probe a soft-tissue phantom and replay the interaction in simulation. We train the network to correct for the difference between the predicted mesh position and the measured point cloud. This results in 15-30% improvement in the mean distance, demonstrating the effectiveness of our approach across a large range of simulation parameters. Conclusion We show a first step towards a framework that synergistically combines the benefits of model-based simulation and real-time observations. It corrects discrepancies between simulation and the scene that results from inaccurate modeling parameters. This can provide a more accurate simulation environment for surgeons and better data with which to train algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源