论文标题
星球引起的涡流,在原星盘中灰尘凝结
Planet-induced Vortices with Dust Coagulation in Protoplanetary Disks
论文作者
论文摘要
在这项工作中,我们研究了粉尘凝血/碎片如何通过进行全局2D高分辨率的流体动力学模拟,如何影响嵌入低粘度盘中的巨大行星引起的涡旋的进化和观察表面。在涡流中,由于其较高的气体表面密度和较高的压力梯度,灰尘凝结,碎裂和漂移(到涡流中心)都非常有效,产生了从微米到$ \ sim 1.0 \ sim 1.0 \ {\ rm cm cm cm} $的灰尘颗粒,以及总体高尘埃与高尘的比率(以及高于Unity)。此外,涡流尺寸的分布在涡旋内非常均匀,涡旋中心的质量加权平均灰尘尺寸($ \ sim 4.0 $ mm)比其他涡流区域大。$ \ sim10 $。大型($ \ sim $ mm)和小(数十微米)颗粒都对涡流中的气体运动产生了强烈的贡献。因此,我们发现粉尘凝结的包含对涡旋寿命有重大影响,典型的涡流寿命约为1000轨。最初的气态涡流被破坏后,灰尘散布成一个戒指,剩余的较小的气态涡流,灰尘浓度高和最大尺寸($ \ sim $ mm)。在很晚时,凝结案例的合成尘埃连续图像显示为镶嵌的环,在1.33 mm频段处有几个热点,而只有不同的热点保持在7.0毫米处。
In this work, we study how the dust coagulation/fragmentation will influence the evolution and observational appearances of vortices induced by a massive planet embedded in a low viscosity disk by performing global 2D high-resolution hydrodynamical simulations. Within the vortex, due to its higher gas surface density and steeper pressure gradients, dust coagulation, fragmentation and drift (to the vortex center) are all quite efficient, producing dust particles ranging from micron to $\sim 1.0\ {\rm cm}$, as well as overall high dust-to-gas ratio (above unity). In addition, the dust size distribution is quite non-uniform inside the vortex, with the mass weighted average dust size at the vortex center ($\sim 4.0$ mm) being a factor of $\sim10$ larger than other vortex regions. Both large ($\sim$ mm) and small (tens of micron) particles contribute strongly to affect the gas motion within the vortex. As such, we find that the inclusion of dust coagulation has a significant impact on the vortex lifetime and the typical vortex lifetime is about 1000 orbits. After the initial gaseous vortex is destroyed, the dust spreads into a ring with a few remaining smaller gaseous vortices with a high dust concentration and a large maximum size ($\sim$ mm). At late time, the synthetic dust continuum images for the coagulation case show as a ring inlaid with several hot spots at 1.33 mm band, while only distinct hot spots remain at 7.0 mm.